If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72x^2-36=0
a = 72; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·72·(-36)
Δ = 10368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10368}=\sqrt{5184*2}=\sqrt{5184}*\sqrt{2}=72\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{2}}{2*72}=\frac{0-72\sqrt{2}}{144} =-\frac{72\sqrt{2}}{144} =-\frac{\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{2}}{2*72}=\frac{0+72\sqrt{2}}{144} =\frac{72\sqrt{2}}{144} =\frac{\sqrt{2}}{2} $
| 32=-4(x–3) | | -27=4d+13 | | 180=15+x | | 138=(x+12)•x | | 4/5y+1/2=1/2y-3/5 | | 13n+11=-12+13n | | x/2-104=204 | | -1x=-160 | | 2x+6(6.42)=50 | | (-4x+5)/5+6=-2x+4 | | 8q+10=-10+10q | | 2x=120/19 | | u^=1024 | | x=5/9(2x-32) | | -7a+3+8a=13-8 | | X(.4)-y=350 | | 8x-4x+5+3=4x-x-2-2 | | {3X+2y=40 | | (-2x+1)/2-4=-3x+6 | | 4d-10=-10+4d | | 0=21x^2-240x+1188 | | 5-r=-9+r | | Z=-4z-10 | | x^2+5x+8 | | 3u-10=-10+3u | | 0=8q-8q | | B=570m | | 2x^2-24x+47=0 | | 1.1-t/2=t/3-14 | | 2x-3+2x-4=3x-1-2 | | -7s-10=-7s+5 | | 4y^2-3y=9 |